ALGOR AND THE MACNEAL PROPOSED STANDARD SET OF PROBLEMS TO TEST FINITE ELEMENT ACCURACY

Eng. Dagoberto Schubert Severo PCE Ltda. - Rua Felix da Cunha, 360/210 90570.000 - Porto Alegre, RS - Brazil Fone: 55.51.346.1287 - Fax: 55.51.346.5205 Email: pceltda@portoweb.com.br

In this paper we present the results of the tests proposed by MacNeal in the paper¹ "A Proposed Standard set of Problems to Test Finite Element Accuracy" using Algor Release 12 for Windows 98/NT to solve this tests. The Algor Release 12 is available to download free and limited time trial at www.algor.com.

The tests

Patch test for plate

a=0.12; b=0.24; t=0.001; E=1.0x10⁶; v=0.25 Location of inner nodes:

	Х	у
1	0.04	0.02
2	0.18	0.03
3	0.16	0.08
4	0.08	0.08

Fig. 1. Patch test for plates.

Membrane plate patch test:

Boundary conditions:	Theoretical solution:
$u = 10^{-3}(x+y/2)$	$\gamma_{x} = \gamma_{y} = (=10^{-3})^{-3}$
$v = 10^{-3}(y+x/2)$	$\Phi_x = \Phi_y = 1333; \vartheta_{xy} = 400$

Bending plate patch test:

Boundary conditions:	Theoretical solution:
$T = 10^{-3}(x^2 + xy + y^2)$	<i>Bending moments unit length:</i> $m_x = m_y = 1.111 \times 10^{-7}$
$2_x = 10^{-3}(y+x/2)$	Surface stresses: $\Phi_x=\Phi_y=+-0.667$; $\vartheta_{xy}=+-0.200$
$2_v = 10^{-3}(-x-y/2)$	

¹ MACNEAL, R.H., HARDER, R. L.; "A Proposed Standard set of Problems to Test Finite Element Accuracy", *Finite Elements in Analysis and Design 1 (1985) 3-20, North-Holand.*

Patch test for solid

Outer dimensions: unit cube: $E=1.0x10^6$; v=0.25.

Location of inner nodes:

	х	у	
1	0.249	0.342	0.192
2	0.826	0.288	0.288
3	0.850	0.649	0.263
4	0.273	0.750	0.230
5	0.320	0.186	0.643
6	0.677	0.305	0.683
7	0.788	0.693	0.644
8	0.165	0.745	0.702

Boundary conditions:	Theoretical solution:
$u = 10^{-3}(2x+y+z)/2$	$\gamma_x = \gamma_y = \gamma_z = (x_x) = (y_z) = (y_z) = (y_z)^{-3}$
$v = 10^{-3}(x+2y+2z)/2$	$\Phi_x = \Phi_y = \Phi_z = 2000; \vartheta_{xy} = \vartheta_{yz} = \vartheta_{zx}$
	=400
$w = 10^{-3}(x+y+2z)/2$	

Torsion on straight cantilever beam

Length = 6.0; width = 0.2; depth = 0.1; E = 1.0×10^7 ; mesh = 6×1 ; Loading: unit forces at free end. a) Regular shape elements; b) Trapezoidal shape elements; c) Paralelogram shape elements. Note: all elements have equal volume.

Theoretical	solutions	for	straight	beam	probl	em
			~		p	

Tip load direction	Displacement in
	direction of load
Extension	3.0×10^{-5}
In-plane shear	0.1081
Out-of-plane shear	0.4321
Twist	0.03208*

* In our opinion the displacement for the problem of torsion of a straight cantilever beam is 0.0034074. We calculated this value using the expression used by Beer Jonhston².

Where:

E = 1.0e7; v = 0.3; G = 3.846144e6;

$$a = 0.2$$
; $b = 0.1$; $L = 6.0$

With a/b = 2 results in c1=0.246 e c2=0.229 (table 3.1 pg.282). The torsion angle ϕ is:

 $Dx = a/2 * tan \phi = 0.2/2 * tan 0.034061 = 0.0034074$

We generate one FEA model with 20,000 nodes and the dx achieved was 0.003291.

Fig. 3. Straight cantilever beam

² BEER, F.P., JOHNSTON, e.r., "Resistência dos Materiais"; McGraw-Hill, 1989,1982, São Paulo, SP.

Curved Beam

Inner radius = 4.12; outer radius = 4.32; arc = 90°; thickness = 0.1; E = 1.0×10^7 ; v = 0.25; mesh = 6×1 . Loading = unit force at tip.

Theoretical solutions for curved beam problem

Tip load direction	Displacement in direction of load
In-plane shear	0.08734
Out-of-plane shear	0.5022

Twisted Beam

Length - 120; width -1.1; depth - 0.32; twist - 90^{0} (root to tip) E - 29.0 x 10^{6} ; v - 0.22; mesh - 12 x 2. Loading: unit forces at tip.

END Fig. 5. Twisted Beam

Theoretical solutions for twisted beam problem

Tip load direction	Displacement in direction of load
In-plane shear	0.005424
Out-of-plane shear	0.001754

Rectangular plate

a=2.0; b=2.0 or 10.0; Thickness=0.01; E=1.7472x10⁷; v = 0.3; boundaries=simply suported or clamped; mesh= NxN(on 1/4 of plate). Loading=uniform pressure. $q=10^{-4}$, or central load P= $4.0x10^{-4}$.

We used the thickness equal to 0.01 for both plates and bricks, because when using thickness equal to 0.0001 for plates the displacements are large compared to the plate thickness.

Fig. 5. Rectangular plate

Theoretical	solutions	for rectan	gular plate
111001011001	50000000		Succes prove

Boundary supports	Aspect ratio	Displacement at center of plate (10 ⁻⁶)		
	b/a	uniform pressure	Concentrated force	
Simple	1.0	4.062	11.60	
Simple	5.0	12.97	16.96	
Clamped	1.0	1.26	5.6	
Clamped	5.0	2.56	7.23	

Scordelis-Lo roof.

Radius - 25.0; length -50.0; thickness -0.25; E - 4.32 x 10^8 ; v - 0.0; loading - 90.0 per unit area in - Z direction; $u_x = u_z = 0$ on curved edges; mesh: N x N on shaded area.

Theoretical solution

The value for the midside vertical displacement quoted in [5] is 0.3086. Many finite elements converge to a slightly smaller value. We have used the value 0.3024 for normalization of our results.

Thick-walled cylinder.

Thick-walled cylinder . Inner radius = 3.0; outer radius = 9.0; thickness = 1.0; E = 1000; v = 0.49, 0.499, 0.4999; plane strain condition; mesh : 5×1 (as shown). Loading: unit pressure at inner radius.

Theoretical solution

Formula for radial displacement: $u = \frac{(1+v)pR_1^2}{E(R_2^2 - R_1^2)} [R_2^2 / r + (1-2v)r]$

where p = pressure; $R_1 = inner radius$; $R_2 = outer radius$

Poisson's ratio	Radial displacement at $r = R_1$
0.49	5.0399 x 10 ⁻³
0.499	5.0602 x 10 ⁻³
0.4999	5.0623 x 10 ⁻³

Fig. 6. Scordelis - Lo roof

Fig. 7. Thick-walled cylinder

Algor Elements used in this tests

Type 6

Plate/Shell elements are Type 6 elements. These three- or four-node elements are formulated in threedimensional space. Five degrees-of-freedom are defined for these elements: three translations and two rotations which produce out-of-plane bending. The rotation normal to the plane of the plate is not defined.

Element Formulation Method:

0: QM5 plane stress element and Veubeke plate element boundary element formulation 1: Constrained Linear Strain Triangle (CLST) with

Reduced Shear Integration. HCT (Hsieh, Clough and Tocher) plate bending element is used.

2: Same as above but without reduced shear integration.

3: Constant Strain Triangle (CST) with HCT plate bending element.

In this tests are used only method 0 (Veubeke)

Type 5

Three-dimensional, solid elasticity elements are Type 5 elements.

These four to eight-node elements are formulated in threedimensional space and have only three degrees-of-freedom defined per node: the X translation, the Y translation, and the Z translation (see Figures 1 through 6). Isotropic material properties are assumed, and incompatible displacement modes are assumed in the formulation of the element stiffnesses. Pressure, thermal, and uniform inertia loads in three directions are the allowable element based loadings.

In this tests are used 2nd integration order and incompatible mode.

Type 26

Three-dimensional shell elements are Type 26 elements and are 4- to 8-node isoparametric quadrilaterals or 3- to 6node triangular elements in any 3-D orientation.

In this tests are used only the high-order option with 8 nodes.

Type 25

Three-dimensional solid elements are Type 25 elements. A general 3-D isoparametric element with a variable number of nodes from 8 to 21 can be used. The first 8 nodes are the corner nodes of the element; nodes 9 to 20 correspond to mid-side-nodes; and node 21 is a center node.

In this tests are used only the high-order option with 20 nodes.

Algor test results

Table 1. – Patch test results

Maximum error in stress				
	Type 6	Type 26	Type 5	Type 25
Constant-stress loading	0.00%	21.65%	0.00%	-
Constant-curvature loading	3.60%	-	N/A	N/A

Table 2 - Results for straight cantilever beam

Normalized tip displacement in direction of load						
Tip loading direction	Type 6	Type 26	Type 5	Type 25		
	(a) Rectangular ele	ements				
Extension	0.996	1.005	0.988	1.000		
In-plane shear	0.993	0.987	0.978	0.970		
Out-of-plane shear	0.984	0.992	0.973	0.961		
Twist*	0.567	0.880	0.840	0.851		
(b) Trapezoidal elements						
Extension	1.010	1.004	1.005	1.000		
In-plane shear	0.052	0.900	0.040	0.886		
Out-of-plane shear	0.985	0.947	0.025	0.923		
Twist*	0.488	0.927	0.570	0.920		
(c) Parallelogram elements						
Extension	1.011	1.004	1.006	1.001		
In-plane shear	0.633	0.980	0.615	0.968		
Out-of-plane shear	0.985	0.968	0.523	0.942		
Twist*	0.705	0.853	1.188	0.788		

Table 3. - Results for curved beam

Normalized tip displacement in direction of load					
Tip loading direction	Type 6	Type 26	Type 5	Type 25	
In-plane (vertical)	0.889	1.003	0.738	0.997	
Out-of-plane	0.666	0.956	0.700	0.937	

Table 4. – Results for twisted beam

<u>I able 4. – Results for twisted</u>	beam				
Normalized tip displacement in direction of load					
Tip loading direction	Type 6	Type 26	Type 5	Type 25	
In-plane	0.657	0.849	0.980	0.996	
Out-of-plane	0.835	7.862	0.977	1.001	

(a) Aspect ratio = 1.0	Normalized latera	a defiection at center	ľ	
Number of nodes spaces per	Type 6	Type 26	Type 5	Type 25
edge of model				
2	0.870	0.699	0.040	
4	0.965	0.969	0.413	0.991
6	0.984		0.788	
8	0.991	0.994	0.919	0.999
(b) Aspect ratio = 5.0	Normalized latera	al deflection at center	r	
Number of nodes spaces per	Type 6	Type 26	Type 5	Type 25
edge of model				
2	1.087		0.024	
4	1.023	1.002	0.303	1.025
6	1.009		0.722	
8	1.004	0.995	0.917	0.997

Table 5 – Results for rectangular plate simple supports: uniform load(a) Aspect ratio = 1.0Normalized lateral deflection at center

Table 6 - Results of rectangular plate clamped supports: concentrated load

(a) Aspect ratio = 1.0	Normalized latera	al deflection at center	•	
Number of nodes spaces per	Type 6	Type 26	Type 5	Type 25
edge of model				
2	0.900			
4	0.966	0.857	0.306	0.822
6	0.984			
8	0.992	0.976	0.824	0.960
(b) Aspect ratio = 5.0	Normalized latera	al deflection at center	•	
Number of nodes spaces per	Type 6	Type 26	Type 5	Type 25
edge of model				
2	0.613		0.006	
4	0.806	0.401	0.083	0.374
6	0.858		0.247	
8	0.883	0.806	0.415	0.782

Table 7 - Results for Scordelis-Lo roof

Normalized vertical deflection at midpoint of free edge					
Number of nodes spaces per	Type 6	Type 26	Type 5	Type 25	
edge of model					
2	1.238		0.128		
4	1.005	1.003	0.492	1.004	
6	0.985		0.827		
8	0.980	0.996	0.943	1.006	
10	0.978				

Normalized radial displacement at inner boundary					
Poisson's ratio	Type 6	Type 26	Type 5	Type 25	
0.49	1.029	1.097	1.030	1.038	
0.499	1.030	1.098	1.034	1.039	
0.4999	1.030	1.098	1.098	1.034	

Table 8 – Results for thick-walled cylinder

Table 9 – Summary of test results for shell elements

Test	Element loading		Element	Type 6	Type 26
	In-plane	Out-of-plane	- shape		
(1) Patch test	Х		Irregular	А	D
(2) Patch test		Х	Irregular	В	-
(3) Straight beam, extension	Х		All	А	А
(4) Straight beam, bending	Х		Regular	А	А
(5) Straight beam, bending	Х		Irregular	F	В
(6) Straight beam, bending		Х	Regular	А	А
(7) Straight beam, bending		Х	Irregular	А	В
(8) Straight beam, twist			All	F	С
(9) Curved beam	Х		Regular	С	А
(10) Curved beam		Х	Regular	D	В
(11) Twisted beam	Х	Х	Regular	В	F
(12) Rectangular plate ($N = 4$)		Х	Regular	В	С
(13) Scordelis-Lo roof $(N = 4)$	Х	Х	Regular	А	А
(14) Thick-walled cylinder ($v = 0.4999$)	Х		Regular	В	В
Number of failed tests (D's and F's)				3	2

Table 10 – Summary of test results for solid elements

Test	Element shape	Type 5	Type 25
(1,2) Patch test	Irregular	А	-
(3) Straight beam, extension	All	А	А
(4,6) Straight beam, bending	Regular	В	В
(5) Straight beam, bending	Irregular ^a	F	С
(7) Straight beam, bending	Irregular ^b	F	В
(8) Straight beam, twist	All	D	D
(9) Curved beam in-plane loading	Regular	D	А
(10) Curved beam out-of-plane loading	Regular	D	В
(11) Twisted beam	Regular	А	А
(12) Rectangular plate ($N = 4$)	Regular	F	С
(13) Scordelis-Lo roof ($N = 4$)	Regular	F	А
(14) Thick-walled cylinder ($v = 0.4999$)	Regular	В	В
Number of failed tests (D's and F's)		7	1

^a Bending in plane of irregularity
^b Bending out of plane of irregularity